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Using the projection operator formalism we explore the decay form of the time correlation function Un�t�
��ûn�t�ûn

��0�� of the state variable ûn�t� in the chaotic Kuramoto-Sivashinsky equation. The decay form turns
out to be the algebraic decay 1 / �1+ ��nat�2� in the initial regime t�1 /�ne and the exponential decay
exp�−�net� in the final regime t�1 /�ne. The memory function �n�t� that represents the chaos-induced transport
is found to obey the Gaussian decay exp�−��ngt�2� in the case of large wave numbers, but the 3/2 power decay
exp�−��n3t�3/2� in the case of small wave numbers. The power spectrum of ûn�t� is given by the real part Un����
of the Fourier-Laplace transform of Un�t� and has a dominant peak at �=0. This peak within the linewidth
�̄ne���ne� is given by the Lorentzian spectrum �̄ne

2 / ��2+ �̄ne
2 �. However, the wings of the peak outside the

width �̄ne turn out to take the exponential spectrum exp�−� /�na�. Thus it is found that the exponential decay
exp�−�net� appears to lead to the universal Lorentzian peak, while the algebraic decay 1 / �1+ ��nat�2� arises to
bring about the exponential wing.
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I. INTRODUCTION

In order to clarify the transport processes generated by
chaos and turbulence, such as the chaos-induced friction, we
explore the decay form and the decay rate of the time corre-
lation function of the chaotic and turbulent fluctuations that
represents the average regression of the fluctuations �1–3�.
Phenomenological theories of turbulent transport have been
developed on the basis of both the concept of the eddy vis-
cosity for the Reynolds stress by Boussinesq and the mixing-
length theory by Prandtl, and have been used in various im-
portant fields of engineering �4�. These concepts and
methods are, however, modifications of those of the kinetic
theory of gases.

Therefore, if we employ the modern concepts and meth-
ods of the recent statistical physics of transport processes,
such as the fluctuation-dissipation theorems and the projec-
tion operator formalism �5–8�, then it would be possible to
construct a more systematic and reliable theory of chaotic
and turbulent transport. Indeed such a modern approach has
various merits. First we deal with the time correlation func-
tions of the hydrodynamic fluctuations by generalizing the
dynamic structure factor S�� ,k� of the thermal hydrody-
namic fluctuations that can be measured by the scattering of
light and neutrons by the hydrodynamic fluctuations �9,10�.
Second the projection operator formalism leads to a non-
Markovian linear evolution equation for the time correlation
function that is integrable. Then the linear evolution equation
is integrated to give an important relation that describes the
dynamic structures of the time correlation function Un�t� in
terms of the memory spectrum �n�i�� explicitly.

Therefore, the purpose of the present paper is to clarify
the dynamic structures of the time correlation functions and
the power spectra of the chaotic and turbulent fluctuations
from a modern statistical-physical point of view. As a simple
dynamical system, we treat the chaotic Kuramoto-
Sivashinsky �KS� equation �1,11�.

The present paper is organized as follows. In Sec. II, we
show that the decay forms of the time correlation function
Un�t� consist of the exponential decay and an algebraic de-
cay. In Sec. III, the real part Un���� of the Fourier-Laplace
transform of Un�t� and the power spectrum Iûn

����Un����
are written in terms of the memory spectra �n���� and �n����.
Then, in Sec. IV, the power spectrum is shown to consist of
a dominant peak lying at �=0, and become Lorentzian if and
only if the memory spectrum �n���� has an extremum at �
=0. In Sec. V, we clarify the dynamic structures of Un�t� and
�n�t�. Then, in Sec. VI, we derive the two decay forms of
Un�t� theoretically for the stochastic frequency modulation
model. Section VII is devoted to a summary.

II. DECAY FORMS OF THE NORMALIZED TIME

CORRELATION FUNCTION Ũn„t…

We treat the KS equation for the state variable u�x , t�
�1,11�

ut + uux + uxx + uxxxx = 0 �2.1�

under the boundary condition u�x , t�=u�x+L , t�. The spatial
period L is chosen to be 500, which is sufficiently large for
the KS equation to produce chaotic solutions. The
N-truncated Fourier transform of Eq. �2.1� yields N evolution
equations �1�

dûn�t�
dt

= Lnûn�t� + Nn�t�, n = 1, . . . ,N , �2.2�

where we have defined Ln�kn
2−kn

4, �kn�2	n /L�,

ûn�t� � 	
0

L

u�x,t�e−iknxdx , �2.3�
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Nn�t� � −
i

L



m=−N

N

kmûn−m�t�ûm�t� . �2.4�

The state variable ûn�t� fluctuates with time according to the
chaotic evolution Eqs. �2.2�, leading to a statistically steady
state �1�. This fluctuation ûn�t� is perhaps the simplest ex-
ample of the turbulent hydrodynamic fluctuation.

Now let us consider the time correlation function of the
fluctuation ûn�t� with �ûn�t��=0:

Un�t� � �ûn�t�ûn
��0�� , �2.5�

=
1

M


j=0

M−1

ûn�t + T0 + 40j�ûn
��T0 + 40j� , �2.6�

where the starting time is T0=1000; the final time T=107;
and the “ensemble” number M = �T−T0� /40�2.5
104. We
have used a pseudospectral method with N=256 for the spa-
tial derivative and the fourth-order Runge-Kutta method with
a time increment of 0.1 for the time evolution. The direct
numerical simulation �DNS� of Eq. �2.6� gives the decay
form of the normalized time correlation function defined as

Ũn�t� �
Un�t�
Un�0�

, �2.7�

which is shown in Fig. 1 for n=55, 30, 10, 5. The angular
brackets �¯� in Eq. �2.5� denote the long-time average �2.6�.
Hence Fig. 1 indicates that the mixing occurs so that Un�t�
= �ûn�t���ûn

��0��=0 for t→�. We find from Fig. 1 for n=55,
10, 5 that the decay is slower as n is smaller.

Figure 2 shows lnŨn�t� against t for n=10, indicating that

the tail of Ũn�t� is given by the exponential decay

Ũn�t� � �ne exp�− �net� for t � 1/�ne, �2.8�

where �ne is the decay rate. Figure 3 shows the two basic

decay forms of Ũn�t� for n=10: one is the exponential decay
�2.8� and the other is the algebraic decay

Ũn�t� �
1

1 + ��nat�2 for t � 1/�ne �2.9�

in the initial regime, where the numerical values of the decay
rates �ne, �na and the amplitude �ne have been determined so

that Eqs. �2.8� and �2.9� fit the DNS of Ũn�t�, and they have
been listed in Table I with 1 /�ne�9.26 for n=10.

Figure 3 indicates that the DNS of Ũn�t� consists of the
algebraic decay �2.9� in the initial regime and the exponen-
tial decay �2.8� in the final regime. Such dual structures seem
to hold for n
15. As will be shown later, this exponential
decay �2.8� is brought about by the energy dissipation due to
the chaos-induced friction and viscosity. In strong contrast to
this, the algebraic decay �2.9� in the initial regime is pro-
duced by the dynamical coherence that is reversible in time.

Thus it turns out that the decay of the time correlation

function Ũn�t� consists of the two basic forms: the exponen-
tial decay �2.8� and the algebraic decay �2.9�, as shown in
Fig. 3 with �na��ne�0.108 for n=10. Such an approxima-

tion of Ũn�t� by the two basic forms �2.8� and �2.9� seems to
become more important as the wave number becomes
smaller.

The power spectrum Iûn
��� of the time series ûn�t� is re-

lated to the time correlation function Ũn�t� by the Wiener-
Khintchine theorem �5� as follows:

TABLE I. Numerical values of the parameters in Eqs. �2.8�,
�2.9�, �5.3�, and �4.3�.

n �ne �ne �̄ne �na �ng

55 3.122 0.223 0.204 0.130 0.116

10 1.755 0.108 0.123 0.083 0.077

5 1.164 0.029 0.041 0.041
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FIG. 2. Ũn�t� vs t for n=10: - - -, the exponential decay
3 exp�−�net�; —, DNS, where 1 /�ne�9.26.
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FIG. 3. A dual structure of Ũn�t� for n=10: �1� - - -, the alge-
braic decay �2.9�; �2� – · –, the exponential decay �2.8�; —, DNS,
where 1 /�ne�9.26.
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FIG. 1. The decay form of Ũn�t� given by the DNS of Eq. �2.6�
for four modes: —,n=55; ¯, n=30; - - -, n=10; – · – ,n=5.
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Iûn
��� � lim

�→�

�

2	�
 1

�
	

0

�

ûn�t�e−i�tdt
2� �2.10�

=
1

	
��ûn�2�Ũn���� , �2.11�

where Ũn���� is the real part of the Fourier-Laplace transform

of Ũn�t�,

Ũn���� � 	
0

�

Ũn�t�cos��t�dt . �2.12�

Therefore, it becomes possible to clarify the dynamic struc-
tures of the power spectrum Iûn

��� in the �n ,�� space by

exploring the time correlation functions Ũn�t�, as will be car-
ried out in Sec. V explicitly. Equation �2.11� is one of the
fluctuation-dissipation theorems.

III. MEMORY SPECTRUM �n„i�…=�n�„�…+ i�n�„�…

Let us assume that the spatial period L is sufficiently large
so that we have the statistical homogeneity. Then, as shown

in Appendix A, the time evolution of Ũn�t� is governed by
the non-Markovian linear evolution equation �1�

dŨn�t�
dt

= − 	
0

t

�n�s�Ũn�t − s�ds �3.1�

with a memory function �n�t� that represents the mixing and
the energy dissipation due to chaos and turbulence. This is
integrated to give the time correlation spectrum

Ũn�i�� � 	
0

�

Ũn�t�e−i�tdt =
1

i� + �n�i��
, �3.2�

where we have defined the memory spectrum

�n�i�� � 	
0

�

�n�t�e−i�tdt = �n���� + i�n���� . �3.3�

Equation �3.2� indicates that the real part �n���� of the

memory spectrum �3.3� represents the decay rate of Ũn�t�
due to the chaos-induced friction and viscosity, so that �n����
must be positive. Indeed, the real part of Eq. �3.2�, i.e.,

Ũn���� =
�n����

�� + �n�����2 + ��n�����2 �3.4�

expresses the time correlation spectrum Ũn���� in terms of
the memory spectra �n���� and �n����, and describes the dy-
namic structure of the time correlation function �2.7�, leading
to a generalization of the dynamic structure factor S�� ,k� of
the thermal hydrodynamic fluctuations �9,10�. In the follow-

ing, therefore, we attempt to clarify the structures of Ũn����
and Ũn���� in terms of �n���� and �n���� by using Eqs. �3.2�
and �3.4�.

The DNS of the memory spectra �n���� and �n���� has

been obtained from Ũn�t� by using Eq. �3.2�, and is shown in

Fig. 4 where the small-amplitude oscillations in ��0.4
seem to vanish if one takes the “ensemble” number M of Eq.
�2.6� sufficiently large. This indicates that �n���� has a maxi-
mum at �=0, and �n���=0�=0. In the neighborhood of �
=0, �n���� and �n���� have the following properties:

�0 = − �n���0� = 0, �n1� � 
d�n�

d�



�=0
� 0, �3.5�

�n0� � �n��� = 0� � 0, �n1� � 
d�n�

d�



�=0
= 0,

�n2� � 
d2�n�

d�2 

�=0

� 0, �3.6�

where we have defined the frequency �0 by �0+�n���0�=0 in
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FIG. 4. DNS of the memory spectra �n���� and �n���� for �a�
n=55 and �b� n=10. The dotted-and-dashed and the broken lines
denote the asymptotic forms �5.9� and �5.10�, respectively.
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order to explore Eq. �3.4� theoretically. Therefore, expanding
the memory spectra �3.3� into the Taylor series around the
maximum �=0, we obtain

�n���� = �n0� + 1
2�n2� �2 + O��3� , �3.7�

�n���� = �n1� � + O��2� . �3.8�

The numerical values of the decay parameters involved in
Eqs. �3.5�–�3.8� are listed in Table II for n=55, 10, where we
have �n��0�=�n0� ��na. The asymptotic forms of the spectra
�n���� and �n���� for �→� will be discussed in Sec. V.

IV. DERIVATION OF THE LORENTZIAN
SPECTRUM

Inserting Eqs. �3.7� and �3.8� into the basic formula �3.4�,
and neglecting O��2� in the numerator and O��3� in the
denominator, we obtain

Ũn���� �
�n0�

�1 + �n1� �2�2 + ��n0� �2 + �n0� �n2� �2 �4.1�

for �
�n0� . This can be written as

Ũn���� �
1

�n0�

�̄ne
2

�2 + �̄ne
2 = Ũn��0�

�̄ne
2

�2 + �̄ne
2 , �4.2�

where we have defined the decay rate

�̄ne �
�n0�

��1 + �n1� �2 + �n0� �n2� �1/2 . �4.3�

The numerical values of �̄ne are listed in Table I, which
shows the reasonable relation �̄ne��ne. Since �n0� ��na as
Table II indicates, Eq. �4.3� leads to

�na

�ne
� ��1 + �n1� �2 + �n0� �n2� �1/2. �4.4�

The power spectrum of the time series ûn�t� is given by Eq.
�2.11�. Therefore, Eq. �4.2� leads to the well-known Lorent-
zian spectrum with half linewidth �̄ne, which is equivalent to
the exponential decay �2.8� with �ne� �̄ne. It should be also

noted that the spectrum Ũn���� around �=0 becomes Lorent-
zian if and only if �n���� has an extremum at �=0.

V. DYNAMIC STRUCTURES OF Ũn�„�… AND �n�„�…

By taking the Fourier-Laplace transform of Eqs. �2.8� and
�2.9�, we find that the spectrum �3.4� takes the form

Ũn���� � �Ũn��0�
1

1 + ��/�ne�2 for � 
 �ne, �5.1�

	

2�na
exp�−

�

�na
� for � � �ne, �5.2�

where Eq. �5.1� is equivalent to Eq. �4.2� with �ne� �̄ne. The
power spectrum of the time series ûn�t� is given by Eq.

�2.11�, and, as shown in Fig. 5, Ũn���� consists of two types
of structures: the Lorentzian spectrum �5.1� formed by the
peak �2� of Fig. 5 and the exponential spectrum �5.2� pro-
duced by the wing �1� of Fig. 5.

Figure 6 shows lnŨn���� against � for �a� n=55 and �b�
n=10, indicating that Ũn���� with ���ne can be approxi-
mated by the exponential spectrum �5.2� much better than
the Gaussian spectrum

TABLE II. Numerical values of the decay parameters in Eqs.
�3.5�–�3.8�.

n �n0� �n1� �n2� �n0� �n1�

55 0.119 0 −1.287 0 −0.298

10 0.073 0 −2.198 0 −0.283
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FIG. 5. The peak �2� and wing �1� of Ũn���� for n=10: �1� - - -,
the exponential spectrum �5.2�; �2� – · –, the Lorentzian spectrum
�5.1�; —, DNS, where �ne�0.108.

0.1 0.2 0.3 0.4 0.5 0.6
Ω

0.01

0.05
0.1

0.5
1

5
10

U�
n

�

�Ω
�

�b� n�10

0.2 0.4 0.6 0.8 1
Ω

0.01

0.05
0.1

0.5
1

5
10

U�
n

�

�Ω
�

�a� n�55

FIG. 6. Ũn���� vs � for �a� n=55 and �b� n=10: - - -, the
exponential spectrum �5.2�; ¯, the Gaussian spectrum �5.3�; —,
DNS.
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Ũng� ��� �
�	

2�ng
exp�− � �

2�ng
�2� , �5.3�

where the numerical values of the decay rate �ng, listed in

Table I, have been determined so that Ũng�t�=exp�−��ngt�2�
fits the DNS of Ũn�t� in the neighborhood of t=0.

Figure 5 is just the complement of Fig. 3, and their dy-
namic structures on the �-n plane are shown in Fig. 7. Their

most outstanding feature is the fact that Ũn���� has a domi-
nant maximum at �=0 and is described by the Lorentzian
spectrum �5.1� for �
�ne, as shown in Fig. 5. According to
Eq. �5.2�, the basic formula �3.4� must have the exponential
spectrum exp�−� /�na� for ���ne, leading to the wing of
Fig. 5.

The exponential spectrum �5.2� appears when the dynami-
cal coherence is dominant, whereas the Lorentzian spectrum
�5.1� occurs in a small frequency region �
�ne where the
dissipation rate �ne� �̄ne of Eq. �4.3� due to the chaos-
induced friction and viscosity becomes dominant. Therefore,

it can be concluded that the decay form of Ũn�t� exhibits the
dual structures, the exponential decay �2.8� and the algebraic
decay �2.9�, in order to bring about the two different spectra,
the Lorentzian peak �5.1� and the exponential wing �5.2�,
respectively. Since Eqs. �5.1� and �5.2� are given by the

Fourier-Laplace transform of Eqs. �2.8� and �2.9�, Ũn����
takes a form similar to the dual structures of Ũn�t�. This
represents the symmetry of the dual structures of chaos.

Figure 8 shows the dynamic structures of Ũn���� and

Ũn���� that are the real and imaginary parts of Ũn�i��
= Ũn����+ iŨn����. Other n’s give similar types of structures.

The imaginary part Ũn���� of Eq. �3.2� takes the form

Ũn���� = −
1

�
−

2�na
2

�3 + O� 1

�5� for � → � , �5.4�

as proved in Appendix B. The asymptotic forms �5.2� and
�5.4� are shown by the dotted-and-dashed and broken lines,
respectively, in Fig. 8.

Next, let us consider the time evolution of the memory
function �n�t� which is given by the time correlation function
of the fluctuating force rn�t�. The time evolution of rn�t� is
governed by the modified propagator exp�tQ�� with the pro-
jection operator Q that excludes the linear motion in ûn�t�, so

that the time evolution of �n�t� must be different from that of

Ũn�t�, as discussed in the previous paper �2�.
Indeed, the normalized memory function �̃n�t�

��n�t� /�n�0� does not have the exponential decay
exp�−�net�, as shown in Figs. 9 and 10, because we have
excluded the linear motion in ûn from the time evolution of

�̃n�t�. This is in strong contrast to the time evolution of Ũn�t�
that always has the exponential tail. Namely, �̃n�t� with large
n such as n=55, 30 is given by the Gaussian decay

�̃n�t� � exp�− ��ngt�2� , �5.5�

whereas �̃n�t� with small n such as n=10, 5 is given by the
3/2 power decay
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FIG. 7. Dynamic structures of Ũn���� on the �-n plane.
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FIG. 8. Dynamic structures of Ũn���� and Ũn���� for �a� n=55
and �b� n=10. The dotted-and-dashed and the broken lines denote
the asymptotic forms �5.2� and �5.4�, respectively.
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�̃n�t� � exp�− ��n3t�3/2� , �5.6�

where the numerical values of �ng and �n3 are listed in Table

III, and lead to the decay times �nr of �̃n�t� lying between
1 /0.288�3.5 and 1 /0.147�6.8. In either case, the decay of

�̃n�t� is faster than the exponential decay exp�−�net�. By
comparing Fig. 10 with Fig. 1, we find in the case of n=5

that the decay time �nr�=1 /�n3� of �̃n�t� is much smaller than

the decay time �nM�=1 /�ne� of Ũn�t�, where Tables I and III

give �nr=6.80 and �nM =34.5 with �nr /�nM =0.20. Therefore,
if the wave number kn=2	n /L is small enough, then we may
put �n�s�=2�nM��s� in Eq. �3.1�, so that we have a Markov

process Ũn�t�=exp�−�nMt�. This is related to the eddy vis-
cosity �T by �nM = �̄ne=�Tkn

2 for kn→0 �1�.
Equation �3.2� leads to

�n���� =
Ũn����

�Ũn�����2 + �Ũn��a��2
, �5.7�

�n���� = − � −
Ũn����

�Ũn�����2 + �Ũn��a��2
. �5.8�

Therefore, using the asymptotic forms �5.2� and �5.4� of

Ũn���� and Ũn���� for �→�, we can estimate the asymptotic
forms of �n���� and �n���� for �→�. Thus, inserting Eqs.
�5.2� and �5.4� into Eq. �5.7�, we obtain

�n���� →
Ũn����

�Ũn�����2
→

	

2�na
�2 exp�−

�

�na
� �5.9�

for �→�. Similarly, inserting Eqs. �5.2� and �5.4� into Eq.
�5.8�, we obtain

�n���� → − � −
1

Ũn����
→ −

2�na
2

�
�1 −

2�na
2

�2 � �5.10�

for �→�. The asymptotic forms �5.9� and �5.10� are shown
by the dotted-and-dashed and broken lines, respectively, in

Fig. 4. These asymptotic forms of Ũn�i�� and �n�i�� are
useful for clarifying the dynamic structures for �→�.

VI. STOCHASTIC FREQUENCY MODULATION MODEL

Finally, let us discuss a stochastic model that brings about
both the exponential decay �2.8� and the algebraic decay
�2.9� theoretically. That is the frequency modulation model
dz�t� /dt= i��t�z�t� �5�, where ��t� is a Gaussian stochastic
process with ���t��=0. The initial value z0=z�t=0� is as-
sumed to be independent of the process ��t�. This model has
been invented as a simplified model for discussing the mag-
netic resonance absorption, in particular, the nuclear mag-
netic resonance absorption �5,12�. Then we have �5�

Ũ�t� �
�z�t�z��0��

��z0�2�
= exp�− 	

0

t

�t − s����s���0��ds� .

�6.1�

We now assume that �12�

5 10 15 20 25 30 35 40
t

0

0.2

0.4

0.6

0.8

1

��

n
�t
�

�b� n�30

5 10 15 20 25 30 35 40
t

0

0.2

0.4

0.6

0.8

1

��

n
�t
�

�a� n�55

FIG. 9. Decay form of �̃n�t� for �a� n=55 and �b� n=30: - - -, the
Gaussian decay �5.5�; —, DNS.
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FIG. 10. Decay form of �̃n�t� for �a� n=10 and �b� n=5: - - -,
the 3/2 power decay �5.6�; —, DNS.

TABLE III. Numerical values of �ng and �n3.

n 70 55 30 10 5

�ng 0.288 0.255 0.283

�n3 0.164 0.147
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���t���0�� = e−t2. �6.2�

Then, Eq. �6.1� can be expressed by

Ũ�t� = exp�− t	
0

t

e−x2
dx +

1

2
�1 − e−t2�� . �6.3�

This reduces to Ũ�t��exp�−�	t /2� for t�1.
Figure 11 shows three time correlation spectra: the exact

spectrum Ũ����, the exponential spectrum

Ũa���� =
	

�2
exp�− �2�� �6.4�

and the Gaussian spectrum

Ũg���� =�	

2
exp�− �2/2� , �6.5�

which are the real parts of the Fourier-Laplace transforms of

the time correlation functions: Ũ�t� in Eq. �6.3�, the algebraic
decay

Ũa�t� =
1

1 + �t/�2�2
, �6.6�

and the Gaussian decay

Ũg�t� = exp�− �t/�2�2� , �6.7�

respectively. The figure indicates that the exponential spec-

trum Ũa���� agrees with the exact spectrum obtained from

Eq. �6.3� much better than the Gaussian spectrum Ũg���� for
larger �. This means that the time correlation function of the

form �6.3� can be approximated by the algebraic decay Ũa�t�
much better than the Gaussian decay Ũg�t� for smaller t.
Therefore we have

Ũ�t� � � 1

1 + �t/�2�2
for t 
 �2, �6.8�

exp�− �	t/2� for t � 1. �6.9�

Equations �6.8� and �6.9� lead to the exponential decay �2.8�
and the algebraic decay �2.9�, by taking the algebraic decay

Ũa�t� in contrast to the conventional theory �5� that takes the

Gaussian decay Ũg�t�. The stochastic frequency modulation
model would, therefore, suggest that the dual structures of
the exponential decay �2.8� and the algebraic decay �2.9�

hold quite generally beyond the chaotic KS equation.

VII. SUMMARY

It has been shown for the KS equation �2.1� that the time
correlation function �2.7� exhibits the two decay forms, the
exponential decay �2.8�, and the algebraic decay �2.9�, lead-
ing to the two basic structures of Fig. 3. These dynamic
structures may be summarized by Figs. 5 and 7 for the time

correlation spectrum Ũn����, and have been clarified by inte-
grating the non-Markovian linear evolution Eq. �3.1�. Thus
we have discovered that the decay form of the time correla-
tion function �2.7� exhibits the dual structures, the exponen-
tial decay �2.8� and the algebraic decay �2.9�, which bring
about the universal Lorentzian peak �5.1� and the exponential

wing �5.2�, respectively. Namely, Ũn���� takes a form similar

to Ũn�t�, which represents the symmetry of the dual struc-
tures of chaos. Thus we have found the following four basic
decay forms.

�1� The time correlation function Ũn�t� consists of the
algebraic decay 1 / �1+ ��nat�2� for t�1 /�ne and the exponen-
tial decay exp�−�net� for t�1 /�ne, as shown in Fig. 3. In
contrast to this, the memory function �n�t� takes the Gauss-
ian decay exp�−��ngt�2� for overall time in the case of large
wave numbers, but the 3/2 power decay exp�−��n3t�3/2� in
the case of small wave numbers. Thus it has turned out that
the basic decay forms consist of the algebraic decay 1 / �1
+ ��nat�2� and the following three types: exp�−��nmt�m/2� �m
=2,3 ,4�.

This conclusion differs from the conventional theory of
the random frequency modulation �5� that takes the Gaussian
decay exp�−��ngt�2� for t�1 /�ne instead of the algebraic de-
cay 1 / �1+ ��nat�2�. As shown in Figs. 11 and 6, however, we
have to take the algebraic decay or equivalently the exponen-
tial spectrum �5.2�, since this gives a better approximation
than the Gaussian decay or equivalently the Gaussian spec-
trum �5.3�.

�2� If the wave number is small enough, then the decay

time �nM�=1 /�ne� of Ũn�t� becomes much larger than the
decay time �nr�=1 /�n3� of �n�t�, so that we may put �n�t�
=2�nM��t� in Eq. �3.1�. This leads to a Markov process

Ũn�t�=exp�−�nMt�. Then we have �nM =�Tkn
2 for kn→0 with

the eddy viscosity �T �1�.
�3� The real part �n���� of the memory spectrum �3.3� is

positive and has a maximum at �=0, as shown in Fig. 4. It is
interesting that, as shown in Fig. 5, the time correlation spec-

trum Ũn���� and the power spectrum Iûn
��� have a dominant

peak at �=0, at which the memory spectrum �n���� has a
maximum. It has been shown in Eqs. �3.4� and �4.2� that

�n���� represents the decay processes of Ũn�t� due to the
chaos-induced friction and viscosity. Indeed, Eq. �4.3� would
lead to �̄ne=�Tkn

2 for kn→0.

�4� The imaginary parts Ũn���� and �n���� have been
shown to take the forms of Figs. 8 and 4, whose asymptotic
forms for �→� are given by Eqs. �5.4� and �5.10�.

1 2 3 4 5 6
Ω

0.0001

0.001

0.01

0.1

1

U
�
�
�Ω
�

FIG. 11. Time correlation spectra of the stochastic model �6.1�:
—, the exact spectrum Ũ���� obtained from Eq. �6.3�; - - -, the

exponential spectrum Ũa����; ¯, the Gaussian spectrum Ũg����.
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There exist several studies of the time correlation func-
tions and the power spectra for various dynamical systems,
such as the Hénon-Heiles system �13,14�, the Orszag-
McLaughlin system �13�, and the Lorenz system �15,16�.
However, these papers do not explore the decay forms of the
time correlation functions and the dynamic structures of the
power spectra, which are the subjects of the present paper.

The real part Ũn���� of Eq. �3.2� gives the power spectrum
Iûn

��� of the time series ûn�t�, and represents the dynamic
structures of Eq. �3.4� in terms of the memory spectra �n����
and �n����. This equation indicates that Ũn���� gives a gener-
alization of the dynamic structure factor S�� ,k� �9,10� of the
thermal hydrodynamic fluctuations for the chaotic hydrody-
namic fluctuations. Therefore, in the present paper, we have
developed a modern statistical-physical approach to the dy-
namic structures of the chaotic hydrodynamic fluctuations,
which can be measured by the scattering of light and neu-
trons by the hydrodynamic fluctuations.

APPENDIX A: DERIVATION OF EQ. (3.1) FROM EQ. (2.2)

In order to derive a non-Markovian linear evolution equa-

tion for Ũn�t� from Eq. �2.2� exactly �1�, let us employ the
projection operator formalism �2,6� by introducing the pro-
jection operator

Pg�û�t�� = 

l



m

�g�û�t��ûl
����ûû†�−1�lmûm �A1�

for û��ûn�, n=1, . . . ,N, where �ûû†� denotes the square ma-
trix �ûlûm

† � and �ûû†�−1 means its inverse.
Then, using the Liouville evolution operator � �2� and the

projection operator Q=1−P, �PQ=0�, we can rewrite the
nonlinear force �2.4� as

Nn�t� = et�Nn�0� = et��P + Q�Nn�0� , �A2�

=

m

�nmûm�t� + et�QNn�0� , �A3�

where we have defined a frequency matrix

�nm � 

l

�Nn�0�ûl
����ûû†�−1�lm. �A4�

Therefore, inserting the operator identity �2,3�

et� = etQ� + 	
0

t

dses�P�e�t−s�Q� �A5�

into the second term of Eq. �A3� and defining the fluctuating
forces

rn�t� � etQ�QNn�0� , �A6�

we obtain the new form

Nn�t� = 

m

�nmûm�t� − 

m
	

0

t

�nm�t − s�ûm�s�ds + rn�t� ,

�A7�

where we have defined the memory functions �2,3�

�nm�t� � − 

l

���rn�t��ûl
����ûû†�−1�lm, �A8�

=

l

�rn�t�rl
��0����ûû†�−1�lm. �A9�

Equation �A7� means that the nonlinear force Nn�t� can be
written as the sum of a linear part in ûm�s� �t�s�0� and a
nonlinear fluctuating force rn�t� that is orthogonal to û:

Prn�t� = 0, �rn�t�ûl
�� = 0. �A10�

Thus the memory functions �nm�t� are given by the time
correlation functions �A9� of the fluctuating forces �A6�, and
represent the mixing and relaxation processes of the time

correlation functions Ũn�t� due to chaos and turbulence.
Equation �A9� is often called the second fluctuation-
dissipation theorem �5,6�.

The KS equation �2.1� is invariant under the spatial trans-
lation. Then for a sufficiently large spatial period of L, we
can assume the statistical homogeneity �1�

�ûn�t�ûm
� �s�� = �ûn�t�ûn

��s���nm, �A11�

�ûn�t�ûm�t�ûl�s�� = 0 unless n + m + l = 0, �A12�

�nm = �n�nm, ��n � �nn� , �A13�

�nm�t� = �n�t��nm, ��n�t� � �nn�t�� . �A14�

As shown in Ref. �1�, we further have

Ln + �n = 0, �A15�

so that, inserting Eq. �A7� into Eq. �2.2�, we obtain the evo-
lution equation for ûn�t�

dûn�t�
dt

= − 	
0

t

�n�t − s�ûn�s�ds + rn�t� , �A16�

where Eq. �A9� reduces to

�n�t� =
�rn�t�rn

��0��
��ûn�2�

. �A17�

Let us multiply Eq. �A16� by ûn
��0� and take its average �¯�.

Then, since Ũn�t�= �ûn�t�ûn
��0�� / ��ûn�2� and �rn�t�ûn

��0��=0,
we obtain

dŨn�t�
dt

= − 	
0

t

�n�t − s�Ũn�s�ds . �A18�

This leads to Eq. �3.1�.

APPENDIX B: ASYMPTOTIC FORM OF Ũn„i�…

FOR �\�

Taking the imaginary part of Eq. �3.2�, we obtain

Ũn���� = − 	
0

�

Ũn�t�sin��t�dt .

The partial integration of this leads to
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Ũn���� = −
1

�
−

1

�
	

0

� dŨn�t�
dt

cos��t�dt

= −
1

�
−

1

�3	
0

� d

dt
�d2Ũn�t�

dt2 cos��t��dt

+
1

�3	
0

� d3Ũn�t�
dt3 cos��t�dt

= −
1

�
+

1

�3
 d2Ũn�t�
dt2 


t=0
+ O� 1

�5� �B1�

for �→�, where

Ũn�t = 0� = 1, 
 dŨn�t�
dt



t=0

= 0, lim
t→�

Ũn�t� = 0.

Since Eq. �2.9� gives


 d2Ũn�t�
dt2 


t=0
= − 2�na

2 , �B2�

Equation �B1� takes the form

Ũn���� = −
1

�
−

2�na
2

�3 + O� 1

�5� �B3�

for �→�. This leads to Eq. �5.4�. By comparing Eq. �B1�
with Eq. �3.2�, we find that �n�i��→0 as �→�. Taking the
real part of Eq. �3.2� and inserting Eq. �2.9�, we obtain

Ũn���� = 	
0

�

Ũn�t�cos��t�dt � 	
0

� cos��t�

1 − 1
2 � d2Ũn�t�

dt2 �
t=0

t2
dt

=
1

2
	

−�

� e−i�t

1 + ��nat�2dt �B4�

for �→�. The integral �B4� reduces to Eq. �5.2�.
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